rackjae.blogg.se

Trailing edge triggered flip flop
Trailing edge triggered flip flop








trailing edge triggered flip flop

  • If J and K are at different logic levels, then after the CK pulse, Q and Q will take up the same states as J and K.
  • When J and K are both 0 the flip-flop is inhibited, Q is the same after the CK pulse as it was before there is no change at the output.
  • This can be done however, by using a more complex version of the circuit. These problems caused by the output data ‘racing’ round the feedback lines from output to input before the end of the clock pulse are known as RACE HAZARDS and of course must be avoided.

    trailing edge triggered flip flop

    This can then set up a situation where the flip-flop will rapidly oscillate between its two states. If the clock pulse is still high, or in its t hold period when the flip-flop changes state, the output of NAND 2 will instantly go to logic 0 and the flip-flop will reset back to its original state. This action enables NAND 2 and disables NAND 1.Īs this change of state at the outputs occurs however, there is a problem. On the arrival of a clock pulse, the output of NAND 1 therefore becomes logic 0, and causes the flip-flop to change state so that Q = 1 and Q = 0. At the same time, NAND 2 is disabled, because it only has one of its inputs (K) at logic 1, its feedback input is at logic 0 because of the feedback from Q. OperationĪs a starting point, assume that both J and K are at logic 1 and the outputs Q = 0 and Q = 1, this will cause NAND 1 to be enabled, as it has logic 1 on two (J and Q) of its three inputs, requiring only a logic 1 on its clock input to change its output state to logic 0. The purpose of this feedback is to eliminate the indeterminate state that occurred on the SR flip-flop when both inputs were made logic 0 at the same time. On NAND 2 the reset input (R) of Fig 5.2.7 has been replaced by input K and there is an additional feedback connection from Q. 5.4.1 is now a three input gate and the set input (S) been replaced by an input labeled J, and the third input provides feedback from the Q output. 5.4.1, it can be seen that although the clock input is the same as in the clocked SR flip-flop, gate NAND 1 in Fig. 5.2.7, (Digital Electronics Module 5.2) but in Fig.

    trailing edge triggered flip flop

    The circuit is similar to the clocked SR flip-flop shown in Fig. 5.4.1 shows the basic configuration (without S and R inputs) for a JK flip-flop using only four NAND gates. The JK Flip-flop is also called a programmable flip-flop because, using its inputs, J, K, S and R, it can be made to mimic the action of any of the other flip-flop types.įig.










    Trailing edge triggered flip flop